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Nematic liquid crystals in contact with a flat substrate are studied by means of the Landau—de Gennes
formalism. It is assumed that the substrate provides homogeneous boundary conditions and that the
nematic phase undergoes a first-order transition to the smectic- A phase in the bulk. Above the bulk
transition temperature, a smectic- 4 film with layers perpendicular to the substrate can form if the sur-
face field is sufficiently strong. This surface phase transition is found to be continuous in the mean-field
approximation. Apart from the symmetry-breaking transition, an ordinary prewetting transition may
occur. The effect of smectic layer fluctuations on the stability of the smectic film is discussed. It is sug-
gested that the continuous surface transition can be a Kosterlitz-Thouless transition, where the defects

are edge dislocations.

PACS number(s): 61.30.Gd, 64.70.Md, 68.45.Gd

I. INTRODUCTION

The ordering of liquid crystals (LC’s) by surfaces still
attracts a great deal of experimental and theoretical at-
tention [1]. This is because of the practical importance of
LC devices and a potential wealth of surface phenomena
that can occur at LC interfaces. Apart from wetting
transitions, observed also in simple fluids, there exists a
possibility of surface transitions in which the LC close to
the surface has different symmetry than in the bulk [2].

So far the most studied surface effects have concerned
nematic order in nematogen-substrate systems [1,3]. Rel-
atively less work has been devoted to the onset of smectic
order near a limiting surface. It is known that smectic
order can appear at the free surface of the isotropic phase
or at the interface between the isotropic phase and a solid
substrate, for some systems exhibiting a direct
isotropic—smectic- 4 transition [4]. Theoretical models
[5-7] confirm to some extent experimental observations.
In both cases the onset of smectic order is compatible
with the geometry of the system, i.e., smectic layers are
parallel to the limiting surface.

In this paper we consider another possibility, when LC
molecules prefer to lie on the substrate. Then smectic- A4
layers have to be perpendicular to it. We assume that the
system undergoes a first-order nematic —smectic- 4 transi-
tion and that the substrate enhances the surface nematic
order. It is interesting to see whether the increased
nematic order at the surface can result in smectic- 4 sur-
face ordering above the bulk nematic—smectic-A4 transi-
tion temperature. As far as we know this phenomenon
has not yet been observed in real systems. However, very
recent experimental studies of a bulk LC in an external
electric field [8] show that it is possible to induce the
nematic—smectic- 4 transition by changing the intensity
of the field. The field couples directly to the nematic or-
der parameter and the influence on the smectic order is
indirect, through the coupling of the nematic and smectic
order parameters [9]. We expect that a similar mecha-
nism could be responsible for formation of smectic- 4 lay-
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—

ers in the direction perpendicular to the substrate.

In the next section we define the model and present our
results. In the last section we discuss the effect of fluctua-
tions on the stability of the surface smectic- 4 phase and
also the relation of the surface phase transition to the
Kosterlitz-Thouless transition. Some details of the calcu-
lations are presented in the Appendix.

II. THEORY AND RESULTS

We study the problem outlined in the Introduction us-
ing a Landau—de Gennes formalism. It is assumed that
the free-energy density of the bulk system depends on the
nematic order parameter Q, which is a traceless sym-
metric tensor, and the smectic order parameter ¢ as fol-
lows [10]:

F= Ay*+B¢*+C TrQ?>+D TrQ*+ E(TrQ?)?
+¢?[F TrQ*+G(k-Q-k)+ H(k-Q-k)*+L(Qk)?],
(1)

where k is normal to the smectic layers. The nematic and
smectic- A phases are uniaxial and there is only one in-
dependent component of Q, which measures the degree of
orientational order with respect to the nematic direction
fi. Moreover, in the smectic-4 phase, k||fi. It is con-
venient to rescale the order parameters and the free ener-
gy to reduce the number of independent coupling con-
stants. After rescaling we have

F=(+1Dn?—293+n*+(ag+an+a,?)?*+¢*, ()

where 7 is the nematic order parameter, ¢t measures the
temperature, and for simplicity we have used the same
symbols for the rescaled free-energy density and the
smectic order parameter. All quantities appearing in Eq.
(2) are dimensionless. As the smectic order cannot ap-
pear without the nematic order, a, must be positive.
When the temperature is lowered the nematic order pa-
rameter increases, and this should favor smectic ordering;
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thus we choose a negative a,. Finally, a, can be either
positive or negative with the restriction @, > —2, which is
required by the stability condition for F. The
nematic—smectic- 4 transition depends on a particular
choice of ay, a, and a,. Here we study the case in which
the system undergoes a first-order nematic-isotropic tran-
sition at zy; =0 and then at ¢y, <O, a first-order transi-
tion to the smectic-4 phase. Other choices of the cou-
pling constants can lead to a continuous
nematic—smectic- 4 transition or to a direct first-order
isotropic—smectic- 4 transition. We note that the same
form of F was also used in Ref. [8] to describe the electri-
cally induced isotropic-nematic—smectic- 4 transitions.

We further assume that the substrate provides homo-
geneous boundary conditions [3], which means that the
nematic director favors some particular direction in the
plane of the substrate. We choose the x axis along that
direction and the z axis along the normal to the substrate.
In the first approximation it seems reasonable to neglect
the biaxiality of the system and assume that Q.. =7,
Q,,=0,,=—n/2. However, in more detailed studies
one should consider a third-order parameter P=Q,,
—Q,,, which, in general, does not vanish in the surface
layer. The surface free energy per unit area ¥ is a func-
tional of m(z) and ¥(z), with the boundary conditions
(0 )=mny(t) and Y(w )=0, where ny(z) is the bulk
nematic order parameter at temperature ty, <t <ty;. F
is given by

2

“ 4 1 d d
A== f) e |k | G i, |2
F(n,¢9)—F, | —hn(z=0),

(3)

where L, and L, are the elastic constants, F, corre-
sponds to the bulk nematic at temperature ¢, 4 is the di-
mensionless surface field, and %(z=0) is the surface
nematic order parameter. It is assumed that # >0, i.e.,
the substrate enhances the nematic order parameter.
There is no direct coupling between the substrate and
1(z=0) because smectic layers can form only perpendic-
ular to the substrate, as a result of the homogeneous
boundary conditions. However, such a term would be
present in the case of the nematic director normal to the
substrate. In general, one usually considers the surface
contribution to F up to the second order in the order pa-
rameters, and then both n(z—0)2 and ¥( (z=0)? should
appear. In this work we take into account only linear
surface terms. Consequences of the inclusion of the
second-order surface terms should be studied separately.

Minimization of F leads to the Euler-Lagrange equa-
tions

oF
;ZZL ¥ =2(t+1)n—6n>+4n*+(a, +2a,7)¢* ,
(4a)

Lzﬁ——g%=2¢(ao+am+a2n2+2¢2) (4b)

together with the boundary conditions at z =0,

an_ . T

L~ hV'L, , (5a)
ay _

Ly-=0. (5b)

Equations (4) and (5) always have a nematic solution with
¥(z)=0, which does not necessarily correspond to the
global minimum of F. If the surface field is sufficiently
strong we may expect that another solution with ¥(z)70
appears at some t* between ty; and ty,, ie., a
symmetry-breaking surface transition takes place and the
translational symmetry of the system in the (x,y) plane is
broken. In the case of a continuous surface transition to
the state with ¥(z)¥0, t* is equal to the mean-field tran-
sition temperature ¢,. If the surface transition is first or-
der, t* corresponds to the stability limit of the solution
with ¥(z)=0. In any case it is useful to first determine
this stability limit. To do this, we seek the solution of the
linearized Euler-Lagrange equations

2

L,‘(11—721—=2(t+1)77—67]2-1-4173 , (6a)
z
2

L2%=2¢(00+alﬂ+02’72) ) (6b)
z

satisfying boundary conditions (5). Equation (6a) can be
solved analytically, but here we need only the first in-
tegral, which is

172
dn _ 2AFy(7) o
dz L, ’

where AFy(p)=Fy(7)—F, and Fy(n)=+1)n?

—2n°+n* Using (6a) and (7) we eliminate z from (6b) to
get

2AF (Y (1) +AFy(n)Y'(7)
‘21—(00+017I+‘1277 Win)=0, (8
2

with the boundary conditions ¢'[n(z=0)]=0 and
PY(ny)=0, where 7(z=0) is determined from (5a) and
(7), and the nematic order parameter of the bulk sys-

tem is ny(2)=(3+V 1—8t)/4. From (8) we find
that ¥(n)~(n—ny)® for n—ny, where =2(L,/
L,)ay+a;my+a,n%)/Fy(ny) and we choose B>O0.
Hence, the solution of (8) can be expressed as
¥(n)=(n—nx)2f(n), where f(n) is a regular function at
n=mny. In fact, to determine the stability limit it is
sufficient to find the function r(n)=(n—ny ' (n)/¢¥(n),
which satisfies a Riccati equation,

(n—my)AFy
— [ N S .\ S\
(n—ny5)r r°+ |1 IAFy r
L, (n—ny)?
Z;——Z—F;—(ao+am+a2nz) . 9)

Equation (9) can be easily solved numerically as an initial
value problem with r(ny)=pB. We proceed as follows:
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for a given temperature ¢ the solution #(7) of (9) is pro-
pagated until » =0 is obtained at some value of 7(z=0).
Then the value of the surface field h =h*(¢) at which the
solution of the Euler-Lagrange equations with ¢(z)=0
becomes unstable is found from Egs. (5a) and (7).

As the number of independent parameters is quite
large, we fix the values of ay,a;,a, at a,=10.4833,
a,=—5.8718, a, =0, for which the nematic—smectic- 4
transition is first order at a temperature ty = —2. The
order parameters at the transition are 7, =1.7808,
n,4=19, ¥ ,=0.5801. The surface phase diagram is
studied in the (z,h) plane for a few values of the ratio
L,/L,. In Fig. 1 we show h=hr(¢t) for L,/L,
=0,0.01,0.1,1,10. Below each line the solution of Egs.
(4) with ¢¥(z)=0 is stable, i.e., it corresponds at least to a
local minimum of F. Above each line the surface layer
exhibits the smectic- A order with smectic layers perpen-
dicular to the substrate. In the plot ¢ varies from ¢y, to
t = —1. The latter is the temperature at which the isotro-
pic phase becomes unstable with respect to the onset of
the nematic phase in a bulk system. In fact, the lines
h*(t) extend up to ty; for sufficiently high surface fields.
It is instructive to compare the values of the surface field
at which the smectic order appears close to the surface
with some characteristic bulk field. To do this we add to
F, given by Eq. (2), the term —Hm, where H is a bulk
field. By changing H at fixed a,,a;,a, we can change the
order of the nematic—smectic-A4 transition. For our
choice of parameters the tricritical point is at
Neer =1.7854, t,,,=—0.7938, H,., =4.3751.

The case L,/L,=0 has to be considered separately.
Then Eq. (4b) becomes simply

%5—=2¢(ao+a,7]+azn2+21/12)=0 , (10)
which has either the solution ¥=0 or ¥*=—(a,
+a,;n+a,n?)/2, depending on the value of 7. Substitu-
tion of Y¥(7) into (4a) allows us to integrate the
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FIG. 1. Instability lines for a few values of L,/L; in the
(z,h) plane. To the left of each line there exists a smectic-A4
surface order with smectic layers perpendicular to the substrate.
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differential equation for 7(z) in the same manner as in
one-order parameter problems. However, the profile
¥(z) has a discontinuous derivative at 7*, for which
ay+a,;n*+a,(n*)*=0. Even though the case L,/L,;=0
is, in some sense, singular, we can see that the instability
lines in Fig. 1 do tend to the line with L,/L; =0 when
the value of L, /L decreases.

To study surface transitions one usually introduces
suitable surface order parameters. In our case they are
adsorptions corresponding to 7 and ¥,

r,= fow(n(z)——nN)dz (11a)

and

r,= f0°°¢(z Yz . (11b)

At the symmetry-breaking surface transition I';, changes
from zero above the transition temperature ¢, to a
nonzero value below ¢,. It is interesting to study the rela-
tion between this surface transition and the prewetting
transition, at which both ', and T, change discontinu-
ously. To do this we have to solve the Euler-Lagrange
equations. We have done that using a relaxation method
for solving two-point boundary value problems [11]. Two
boundary conditions are at z=0 [Eqgs. (5a) and (5b)] and
the other two are given at z= . In practice the range of
z is limited to 0=z <z_, . If z,, is sufficiently large we
can solve the Euler-Lagrange equations in the asymptotic
limit z— o, i.e.,

d2
§%szz ~N—NN » (12a)

2
%——'k‘;zz =y, (12b)

where £2=L, /3°F /3n* (ny,¥=0) and £}=L, /3°F /3y*
(ny,¥=0). In this limit 7(z)—7y and ¥(z) decay ex-
ponentially with characteristic lengths §; and &,, respec-
tively, and the boundary conditions at z=z_,, can be ex-
pressed as follows [12]:

6L (2 )+ 21 ) =y =0 (13a)
Er 2 (2 )+ P2a) =0 - (13b)

In the relaxation method a good initial approximation to
the solution of the differential equations is necessary. In
our case, the solution of Egs. (4a) and (4b) with L, =0
was always a good approximation, and the profiles 7(z)
and ¥(z) converged to the true solution after a few itera-
tions.

The resulting phase diagrams in the (¢,h) plane are
shown in Figs. 2 and 3. First we have studied the case
L,/L,=0 [Fig. 2(a)]. There are five possible behaviors of
the system when the temperature is lowered from zy; to
ty 4 at constant surface field.

(i) For small 4 the system has always the nematic sym-
metry down to fy 4.

(ii)) The system undergoes a continuous symmetry-
breaking surface transition at t=t(h). However, the
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thickness of the smectic- 4 film remains finite when ¢ ap-
proaches t5,. This corresponds to a partial wetting situ-
ation.

(iii) Apart from the symmetry-breaking transition there
is an ordinary prewetting transition at t =¢,(h) <t,(h), at
which both I', and I, jump to higher values.
r,,Ty— o when t—ty, and the wetting by the
smectic- 4 is complete.

(iv) If the surface field is higher than A,", at which the
difference between the thin and thick films disappears,
there is only a continuous transition at z=t¢,(h) and
I, Ty— 0 whent—ty,.

(v) For rather high values of 4 the smectic-A surface
order exists in the whole range ty , <t <ty;.

The phase diagram for L, /L;=0.01 is shown in Fig.
2(b). Again there are five possible behaviors of the sys-
tem, depending on the value of 2. However, they differ in
some respects from those in the previous case. The line
of the continuous surface transition terminates at a criti-

(a)

-1.90

0.3 T
(b)

0.2 -7

-1.90

FIG. 2. Surface phase diagram in the (¢,h) plane for (a)
L,/L;=0 and (b) L,/L,=0.01. The dashed line corresponds
to the continuous surface transition (see text), and the solid line
to the prewetting transition, ending at a surface critical point.

4577

cal end point, which lies on the prewetting line instead of
the nematic—smectic- 4 transition line t =ty ,. Thus, the
prewetting line is divided into two parts. The lower part
corresponds to the thin film—thick film transition with a
symmetry change, i.e., I’y jumps from zero to a nonzero
value. The upper part of the prewetting line corresponds
to an ordinary thin film—thick film transition, in which
the symmetry of the film does not change.

Figures 3(a) and 3(b) show the phase diagrams for
L,/L,=0.1 and L,/L;=1, respectively. They differ
from each other only quantitatively. At some value of
L,/L, between 0.01 and 0.1 the critical end point and
the surface critical point, terminating the prewetting line,
merge, and for higher values of L, /L, there is a tricriti-
cal point on the line of the surface transition, shown in
Figs. 3(a) and 3(b). Then there are only four possible
behaviors of the system when ¢ is lowered from zy; to
ty4. Different from the previous cases, the thin
film—thick film transition is simultaneously a symmetry-
breaking transition.

0.3 T

(a)

0.2 + .

h L,/L,=0.1

~2.00 -1.95 -1.90

-2.0 -1.5 -1.0

FIG. 3. Surface phase diagram in the (¢,h) for (a)
L,/L,=0.1and (b) L,/L,;=1. The meaning of the lines is the
same as in Fig. 2. Note the presence of a tricritical point in-
stead of the surface critical point and the critical end point.
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III. DISCUSSION

We have studied a nematogen in contact with a solid
substrate using a Landau—de Gennes description of the
system. The temperature range of interest has been be-
tween the temperatures of the nematic-isotropic and
nematic—-smectic- 4 transitions. We have assumed that
the substrate provides homogeneous boundary conditions
and shown that this may result in smectic-4 ordering
close to the surface of the substrate. However, our con-
siderations have been of the mean-field type. It is well
known that in three dimensions smectic order does not
exist in the thermodynamic limit because of the Landau-
Peierls instability [9]. This means that fluctuations of
smectic layers destroy the smectic order, i.e.,
(u(r)) ~InL, when the linear size of the system L — .
This asymptotic behavior results from the form of the
elastic free energy, which gives

(u1))~kyT [d%(Bg}+Kq})™", (14)

where B and K are the elastic constants of the compres-
sion and undulation modes, respectively, and
Gmin=2m/L. For d=2 the divergence of (u?(r)) is
larger than in d =3, as (u%(r)) ~L for L — . If a bulk
field H coupling to the director is present, then a term
proportional to H?q? has to be added in (14). This
changes the asymptotic behavior for L — « as follows:
{u*(r))~const for d=3 and {(u*(r))~InL for d=2.
The  correlation  function  G(r)=<{exp{igq[u(r)
—u(0)]} ), where 27/q, is the smectic period, decays
algebraically in d =3 if H=0 [13], which means quasi-
long-range translational order. In d =2 the decay of the
correlation function is also algebraic, provided that
H+0. The exponent characterizing that algebraic decay
is proportional to the coherence length &, ~K'/2/H;
thus it diverges when H — 0.

In our surface problem, as long as the smectic- 4 film is
not macroscopically thick it should be treated as a quasi-
two-dimensional system. Then the long wavelength con-
tribution to {u*(r)) is dominated by the modes with q
lying in the plane of the substrate. This means that in the
absence of an ordering field in that plane, the surface
smectic order should be destroyed by the fluctuation
effect. If a surface ordering field is present we expect a
quasi-long-range smectic order close to the substrate, as
for a three-dimensional bulk system. However, the ex-
ponent characterizing the algebraic decay of the correla-
tion function depends on the strength of the surface field.

It is worth noting that the surface phase transitions
above the nematic—smectic-A transition temperature,
studied in this paper, resemble the surface phase transi-
tions above the nematic-isotropic transition temperature,
studied in Ref. [2] and more recently in Refs. [12,14], al-
though the latter case corresponds to planar boundary
conditions. Indeed, the phase diagrams shown in this pa-
per and in Ref. [12] are very similar. This probably re-
sults from similarities between the free energies, which in
both cases are functions of two order parameters with
similar couplings. However, it is argued in Ref. [2] that
the continuous isotropic-nematic surface transition, pre-
dicted by a mean-field calculation, is expected to be a

A. PONIEWIERSKI AND A. SAMBORSKI 51

Kosterlitz-Thouless defect-unbinding transition [15,16].
These defects are disclination lines in the director field.
The low-temperature phase does not have true long-range
orientational order but only quasi-long-range order. As
we have argued, the smectic- 4 film should exhibit quasi-
long-range translational order. Therefore, it is natural to
ask whether the surface symmetry-breaking transition
can be a defect-unbinding transition. To check this possi-
bility we consider an isolated edge dislocation in the
smectic- 4 phase [9]. Such a dislocation is made of a + 1,
—1 disclination pair and its strength is measured by an
integer n, related to the Burgers vector b and the average
layer thickness a, by b=na,. In d =3 the edge disloca-
tion forms a line and its energy per unit length, or the
line tension 7, depends on b, but remains finite when the
size of the system L — . This is, however, true only if
there is no external field coupling to the director. In the
Appendix we analyze the edge dislocation in the presence
of an external field that fixes the orientation of smectic- 4
layers far from the dislocation. In that case 7 does not
have a thermodynamic limit but diverges as InL. This
asymptotic behavior is the same as, for example, in the
case of a disclination line in the nematic phase. The
logarithmic divergence of 7 with L suggests that in d =2
a continuous nematic—smectic- A transition in the pres-
ence of an external field is a defect-unbinding transition
and the defects are edge dislocations.

Finally, we think that it could be interesting to study a
LC-substrate system in the case where there is no stable
bulk nematic phase and a direct isotropic—smectic-A4
transition occurs. It has been shown by Lelidis and
Durand [8] that in such a case the electric field can in-
duce a stable bulk nematic phase called a “nonspontane-
ous” nematic phase. We expect that a similar
phenomenon may occur in the surface layer. If the sub-
strate provides homogeneous boundary conditions, then
above the isotropic—smectic- 4 transition temperature it
could, in principle, be possible to observe two surface
phase transitions: the isotropic-nematic transition and
the nematic—smectic-4 transition, apart from the
prewetting transition. We intend to study this problem in
the future.
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APPENDIX

We generalize the discussion of the edge dislocation
presented in [9] to the case of an external field H parallel
to the z axis. The dislocation line is at the origin along
the z axis and the displacement u, along the z direction,
depends only on x and z. The free-energy density is given

by
2
] ) (A1)

where A>=K /B. One introduces a new field m=Vu,
which is single-valued and then expresses the Euler-

2

2 gy

az

Qu

=1
F ZB{ o

;\'2 82u
dx?
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Lagrange equation in terms of m,

om, e , 0m, 3’m, _
3 En’ o T =0. (A2)
The second equation
VXm=J (A3)

relates m to the dislocation current J, where J, =J,=0
and J,= —aynd(x)8(y). From (A2) and (A3) one finds
the Fourier transform of m,,

inayq,
a7+ A6 gl A

m,(q)= (A4)

2.4
dx

hence, after integration over g,,

tna
m,(x,z)= : qux explig,x)
Xexp(—Alz|V Eg2q2+q) (AS)
and
+ina \/ 292 +q#
m,(x,z)= 0 kqux explig, x )——QH————q—x—

Xexp(—Alz|V Eg2q2+¢) .
(A6)

If H=0, then {; = o and

—x2/4)\z]) . (A7)

*na,

m,(x,z) la] exp(
However, for H¥0 the decay of m, and m, when x — o
is much slower and we find, at z=const, that
m,(x,z)~x "2 and m,(x,z)~x ~!'. To find the line ten-
sion 7 we integrate F outside the dislocation core —& <x,
z <&, where £~na, is a cut-off length. Integration over
the stripe £ <x < + o0, 0 <z <§ gives a finite contribution
to 7. Then we integrate over — oo <x <+, £<z<L
using Fourier representation (AS5) and (A6), and perform-
ing the integral over z first. The term (dm, /3x )? gives a
finite contribution to 7 in the limit L — . However, the
contributions from m? and m? diverge. For example, the
integral of m? gives

fjwdx f;dz mX(x,z)

dq, g

o ‘@——2——"[6)(13( 27»L\/§H +gq,)
—exp[ —2AEV Epql ] .

(A8)

The last integral has a logarithmic divergence at g, =0
when L — oo; hence it diverges as InL.
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